Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Small ; : e2401797, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577831

RESUMO

The interfacial 2D/3D perovskite heterostructures have attracted extensive attention due to their unique ability to combine the high stability of 2D perovskites with the remarkable efficiency of 3D perovskites. However, the carrier transport mechanism within the 2D/3D perovskite heterostructures remains unclear. In this study, the carrier transport dynamics in 2D/3D perovskite heterostructures through a variety of time-resolved spectroscopic measurements is systematically investigated. Time-resolved photoluminescence results reveal nanosecond hole transfer from the 3D to 2D perovskites, with enhanced efficiency through the introduction of fluorine atoms on the phenethylammonium (PEA) cation. Transient absorption measurements unveil the ultrafast picosecond electron and energy transfer from 2D to 3D perovskites. Furthermore, it is demonstrated that the positioning of fluorination on the PEA cations effectively regulates the efficiency of charge and energy transfer within the heterostructures. These insightful findings shed light on the underlying carrier transport mechanism and underscore the critical role of cation fluorination in optimizing carrier transport within 2D/3D perovskite heterostructure-based devices.

2.
BMC Cancer ; 24(1): 292, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439022

RESUMO

PANoptosis is a specific type of inflammatory programmed cell death (PCD) modality that can be involved in three key modes of cellular programmed cell death-pyroptosis, apoptosis and necroptosis. We analyzed PANoptosis activity in three common renal cell carcinoma subtypes (Clear cell renal cell carcinoma, Papillary renal cell carcinoma, and Chromophobe renal cell carcinoma) separately and constructed a new PANoptosis immunity index (PANII). In three renal cell carcinomas, we found that PANII was an effective predictor of immunotherapy efficacy in KIRC, KIRP and KICH, and the high PANII group was characterized by high immune infiltration and sensitivity to immunotherapy, while the low PANII group was prone to immune escape and immunotherapy resistance. We performed molecular docking prediction of each core protein comprising PANII and identified natural small molecule compounds with the highest affinity to target proteins. In addition, we found that down-regulation of PYCARD inhibited the proliferation and migration of renal clear cell carcinoma cells by in vitro functional assays, suggesting that PYCARD could be a novel target for renal clear cell carcinoma therapy. Our findings that the PANoptosis characterization-based index (PANII) helps to elucidate the tumor microenvironmental features of three common renal cell carcinoma subtypes and identify patient populations that will benefit from immunotherapy, providing a new tool for the clinical diagnosis and treatment of patients with intermediate- and advanced-stage renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/terapia , Simulação de Acoplamento Molecular , Imunoterapia , Apoptose , Neoplasias Renais/terapia
3.
Vaccines (Basel) ; 12(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38400134

RESUMO

Bladder cancer, a common malignancy of the urinary system, is routinely treated with radiation, chemotherapy, and surgical excision. However, these strategies have inherent limitations and may also result in various side effects. Immunotherapy has garnered considerable attention in recent years as a novel therapeutic approach. It harnesses and activates the patient's immune system to recognize and eliminate cancer cells, which not only prolongs therapeutic efficacy but also minimizes the toxic side effects. Several immune checkpoint inhibitors and cancer vaccines have been developed for the treatment of bladder cancer. Whereas blocking immune checkpoints on the surface of tumor cells augments the effect of immune cells, immunization with tumor-specific antigens can elicit the production of anti-tumor immune effector cells. However, there are several challenges in applying immunotherapy against bladder cancer. For instance, the efficacy of immunotherapy varies considerably across individual patients, and only a small percentage of cancer patients are responsive. Therefore, it is crucial to identify biomarkers that can predict the efficacy of immunotherapy. Pelvic lymph nodes are routinely dissected from bladder cancer patients during surgical intervention in order to remove any metastatic tumor cells. However, some studies indicate that pelvic lymph node dissection may reduce the efficacy of immunotherapy by damaging the immune cells. Therefore, the decision to undertake pelvic lymph node removal should be incumbent on the clinical characteristics of individual patients. Thus, although immunotherapy has the advantages of lower toxic side effects and long-lasting efficacy, its application in bladder cancer still faces challenges, such as the lack of predictive biomarkers and the effects of pelvic lymph node dissection. Further research is needed to explore these issues in order to improve the efficacy of immunotherapy for bladder cancer.

4.
Environ Toxicol ; 39(5): 3238-3252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361268

RESUMO

Hormones promote the progression of prostate cancer (PRCA) through the activation of a complex regulatory network. Inhibition of hormones or modulation of specific network nodes alone is insufficient to suppress the entire oncogenic network. Therefore, it is imperative to elucidate the mechanisms underlying the occurrence and development of PRCA in order to identify reliable diagnostic markers and therapeutic targets. To this end, we used publicly available data to analyze the potential mechanisms of hormone-stimulated genes in PRCA, construct a prognostic model, and assess immune infiltration and drug sensitivity. The single-cell RNA-sequencing data of PRCA were subjected to dimensionality reduction clustering and annotation, and the cells were categorized into two groups based on hormone stimulus-related scores. The differentially expressed genes between the two groups were screened and incorporated into the least absolute shrinkage and selection operator machine learning algorithm, and a prognostic model comprising six genes (ZNF862, YIF1A, USP22, TAF7, SRSF3, and SPARC) was constructed. The robustness of the model was validation through multiple methods. Immune infiltration scores in the two risk groups were calculated using three different algorithms. In addition, the relationship between the model genes and immune cell infiltration, and that between risk score and immune cell infiltration were analyzed. Drug sensitivity analysis was performed for the model genes and risk score using public databases to identify potential candidate drugs. Our findings provide novel insights into the mechanisms of hormone-stimulated genes in PRCA progression, prognosis, and drug screening.


Assuntos
Neoplasias da Próstata , Fatores Associados à Proteína de Ligação a TATA , Masculino , Humanos , Prognóstico , Neoplasias da Próstata/genética , Próstata , Avaliação Pré-Clínica de Medicamentos , Hormônios , Fator de Transcrição TFIID , Fatores de Processamento de Serina-Arginina
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123275, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37611522

RESUMO

The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a great disaster to the economy and human society. Nowadays, SARS-CoV-2 is fading away from people's memory but it still exists around us. PCR plays an important role in detecting SARS-CoV-2 but it requires a long detecting time, equipped laboratory, and professional operators. In comparison with polymerase chain reaction (PCR), surface-enhanced Raman scattering (SERS) is a promising method for detecting SARS-CoV-2 due to its fast, easily operated, and high-sensitivity properties. In this study, the monolayer Ag nanoparticles (MAgNPs) covered with single-layer graphene (SLG) are applied as a SERS substrate. The angiotensin converting enzyme 2 (ACE2) is selected as a bio-probes that can specifically bind to the SARS-CoV-2 S protein. The SERS-based biosensor is formed by ACE2 functionalized SLG/MAgNPs and the LODs of detecting SARS-CoV-2 S protein in phosphate-buffered saline (PBS) and in pharyngeal swabs solution (PSS) are 0.1 fg mL-1 and 10 fg mL-1, respectively. This biosensor provides a way of directly detecting SARS-CoV-2 S protein with high sensitivity and specificity. It illustrates a practical potential in the rapid detection of the SARS-CoV-2 virus.


Assuntos
COVID-19 , Grafite , Nanopartículas Metálicas , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/diagnóstico , SARS-CoV-2 , Prata , Glicoproteína da Espícula de Coronavírus
6.
Sci Adv ; 9(23): eadh8502, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285440

RESUMO

As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNAPhe), resulting in codon-specific ribosomal pausing and stress signaling. While SAMD9 ACNase activity is normally latent in cells, it can be activated by poxvirus infection or rendered constitutively active by SAMD9 mutations associated with various human disorders, revealing tRNAPhe depletion as an antiviral mechanism and a pathogenic condition in SAMD9 disorders. We identified the N-terminal effector domain of SAMD9 as the ACNase, with substrate specificity primarily determined by a eukaryotic tRNAPhe-specific 2'-O-methylation at the wobble position, making virtually all eukaryotic tRNAPhe susceptible to SAMD9 cleavage. Notably, the structure and substrate specificity of SAMD9 ACNase differ from known microbial ACNases, suggesting convergent evolution of a common immune defense strategy targeting tRNAs.


Assuntos
Anticódon , RNA de Transferência de Fenilalanina , Humanos , Anticódon/genética , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo , Códon , RNA de Transferência/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
7.
Eur J Med Chem ; 258: 115531, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37307624

RESUMO

Hsp90 isoform-selective inhibitors represent a new paradigm for novel anti-cancer drugs as each of the four isoforms have specific cellular localization, function, and client proteins. The mitochondrial isoform, TRAP1, is the least understood member of the Hsp90 family due to the lack of small molecule tools to study its biological function. Herein, we report novel TRAP1-selective inhibitors used to interrogate TRAP1's biological function along with co-crystal structures of such compounds bound to the N-terminus of TRAP1. Solution of the co-crystal structure allowed for a structure-based approach that resulted in compound 36, which is a 40 nM inhibitor with >250-fold TRAP1 selectivity over Grp94, the isoform with the highest structural similarity to TRAP1 within the N-terminal ATP binding site. Lead compounds 35 and 36 were found to selectively induce TRAP1 client protein degradation without inducing the heat shock response or disrupting Hsp90-cytosolic clients. They were also shown to inhibit OXPHOS, alter cellular metabolism towards glycolysis, disrupt TRAP1 tetramer stability, and disrupt the mitochondrial membrane potential.


Assuntos
Proteínas de Choque Térmico HSP90 , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo
8.
J Biomol Struct Dyn ; 41(19): 9745-9755, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36373326

RESUMO

The 90-kDa heat shock protein (Hsp90) is a homodimeric molecular chaperone with ATPase activity, which has become an intensely studied target for the development of drugs for the treatment of cancer, neurodegenerative and infectious diseases. The equilibrium between Hsp90 dimers and oligomers is important for modulating its function. In the absence of ATP, the passive chaperone activity of Hsp90 dimers and oligomers has been shown to stabilize client proteins as a holdase, which enhances substrate binding and prevents irreversible aggregation and precipitation of the substrate proteins. In the presence of ATP and its associated cochaperones, Hsp90 homodimers act as foldases with the binding and hydrolysis of ATP driving conformational changes that mediate client folding. Crystal structures of both wild type and W320A mutant Hsp90αMC (middle/C-terminal domain) have been determined, which displayed a preference for hexameric and dimeric states, respectively. Structural analysis showed that W320 is a key residue for Hsp90 oligomerization by forming intermolecular interactions at the Hsp90 hexameric interface through cation-π interactions with R367. W320A substitution results in the formation of a more open conformation of Hsp90, which has not previously been reported, and the induction of a conformational change in the catalytic loop. The structures provide new insights into the mechanism by which W320 functions as a key switch for conformational changes in Hsp90 self-oligomerization, and binding cochaperones and client proteins.Communicated by Ramaswamy H. Sarma.


Assuntos
Adenosina Trifosfatases , Proteínas de Choque Térmico HSP90 , Humanos , Adenosina Trifosfatases/química , Proteínas de Choque Térmico HSP90/química , Chaperonas Moleculares/química , Dobramento de Proteína , Trifosfato de Adenosina/metabolismo , Conformação Proteica , Ligação Proteica
9.
ACS Med Chem Lett ; 13(12): 1870-1878, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36518703

RESUMO

The heat shock protein 90 (Hsp90) family of molecular chaperones mediates the folding and activation of client proteins associated with all 10 hallmarks of cancer. Herein, the design, synthesis, and biological validation of Hsp90α-selective inhibitors that contain a tertiary alcohol are reported. Forty-one analogues were synthesized to modulate hydrogen-bonding interactions and to probe for steric and hydrophobic interactions within the Hsp90α binding site. Cocrystal structures of lead compound 23d (IC50 = 0.25 µM, 15-fold selective vs Hsp90ß) and a 5-fluoroisoindoline derivative (KUNA-111) revealed a novel binding mode that induced conformational changes within Hsp90α's N-terminal domain. The lead Hsp90α-selective inhibitors did not manifest significant antiproliferative activity, but they did result in selective and dose-dependent degradation of Hsp90α clients in the cellular environment. Additional studies will be sought to determine the effects of the novel conformational change induced by 23d.

10.
Acta Crystallogr D Struct Biol ; 78(Pt 5): 571-585, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503206

RESUMO

The 90 kDa heat-shock protein (Hsp90) is an abundant molecular chaperone that is essential to activate, stabilize and regulate the function of a plethora of client proteins. As drug targets for the treatment of cancer and neurodegenerative diseases, Hsp90 inhibitors that bind to the N-terminal ATP-binding site of Hsp90 have shown disappointing efficacy in clinical trials. Thus, allosteric regulation of the function of Hsp90 by compounds that interact with its middle and C-terminal (MC) domains is now being pursued as a mechanism to inhibit the ATPase activity and client protein-binding activity of Hsp90 without concomitant induction of the heat-shock response. Here, the crystal structure of the Hsp90αMC protein covalently linked to a coumarin derivative, MDCC {7-diethylamino-3-[N-(2-maleimidoethyl)carbamoyl]coumarin}, which is located in a hydrophobic pocket that is formed at the Hsp90αMC hexamer interface, is reported. MDCC binding leads to the hexamerization of Hsp90, and the stabilization and conformational changes of three loops that are critical for its function. A fluorescence competition assay demonstrated that other characterized coumarin and isoflavone-containing Hsp90 inhibitors compete with MDCC binding, suggesting that they could bind at a common site or that they might allosterically alter the structure of the MDCC binding site. This study provides insights into the mechanism by which the coumarin class of allosteric inhibitors potentially disrupt the function of Hsp90 by regulating its oligomerization and the burial of interaction sites involved in the ATP-dependent folding of Hsp90 clients. The hydrophobic binding pocket characterized here will provide new structural information for future drug design.


Assuntos
Antineoplásicos , Proteínas de Choque Térmico HSP90 , Trifosfato de Adenosina/metabolismo , Sítio Alostérico , Antineoplásicos/química , Sítios de Ligação , Cumarínicos , Proteínas de Choque Térmico HSP90/química , Humanos , Ligação Proteica
11.
Sci Rep ; 12(1): 8791, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614085

RESUMO

Calcium (Ca2+) is well known as a second messenger in eukaryotes, where Ca2+ signaling controls life-sustaining cellular processes. Although bacteria produce the components required for Ca2+ signaling, little is known about the mechanisms of bacterial Ca2+ signaling. Previously, we have identified a putative Ca2+-binding protein EfhP (PA4107) with two canonical EF-hand motifs and reported that EfhP mediates Ca2+ regulation of virulence factors production and infectivity in Pseudomonas aeruginosa, a human pathogen causing life-threatening infections. Here, we show that EfhP selectively binds Ca2+ with 13.7 µM affinity, and that mutations at the +X and -Z positions within each or both EF-hand motifs abolished Ca2+ binding. We also show that the hydrophobicity of EfhP increased in a Ca2+-dependent manner, however no such response was detected in the mutated proteins. 15 N-NMR showed Ca2+-dependent chemical shifts in EfhP confirming Ca2+-binding triggered structural rearrangements in the protein. Deletion of efhP impaired P. aeruginosa survival in macrophages and virulence in vivo. Disabling EfhP Ca2+ binding abolished Ca2+ induction of pyocyanin production in vitro. These data confirm that EfhP selectively binds Ca2+, which triggers its structural changes required for the Ca2+ regulation of P. aeruginosa virulence, thus establishing the role of EfhP as a Ca2+ sensor.


Assuntos
Motivos EF Hand , Pseudomonas aeruginosa , Cálcio/metabolismo , Humanos , Pseudomonas aeruginosa/fisiologia , Piocianina/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
12.
Oncol Rep ; 47(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35383860

RESUMO

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that a pair of data panels presented in each of Figs. 3 and 4 appeared to be overlapping, such that these data may have been derived from the same original sources where they were intended to have shown the results from experiments performed under different experimental conditions. The authors realised that these figures had inadvertently been assembled incorrectly; however, as they had retained their access to the raw data, the authors were able to make the appropriate corrections required for these figures. The corrected versions of Figs. 3 and 4, showing the correct wound healing assay result for the DU1450­siSPAG9 experiment at 24 h in Fig. 3F and the correct Matrigel cell invasion assay result for PC3­siSPAG9 in Fig. 4C, are shown on the subsequent pages. Note that these errors did not adversely affect the major conclusions reported in the study. The authors all agree with these corrections and thank the Editor of Oncology Reports for allowing them the opportunity to publish this corrigendum. The authors also apologize for any inconvenience caused, and agree to address any additional questions regarding their results. All raw data are available from the authors upon request. [Oncology Reports 32: 2533­2540, 2014; DOI: 10.3892/or.2014.3539].

13.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046037

RESUMO

SAMD9 and SAMD9L (SAMD9/9L) are antiviral factors and tumor suppressors, playing a critical role in innate immune defense against poxviruses and the development of myeloid tumors. SAMD9/9L mutations with a gain-of-function (GoF) in inhibiting cell growth cause multisystem developmental disorders including many pediatric myelodysplastic syndromes. Predicted to be multidomain proteins with an architecture like that of the NOD-like receptors, SAMD9/9L molecular functions and domain structures are largely unknown. Here, we identified a SAMD9/9L effector domain that functions by binding to double-stranded nucleic acids (dsNA) and determined the crystal structure of the domain in complex with DNA. Aided with precise mutations that differentially perturb dsNA binding, we demonstrated that the antiviral and antiproliferative functions of the wild-type and GoF SAMD9/9L variants rely on dsNA binding by the effector domain. Furthermore, we showed that GoF variants inhibit global protein synthesis, reduce translation elongation, and induce proteotoxic stress response, which all require dsNA binding by the effector domain. The identification of the structure and function of a SAMD9/9L effector domain provides a therapeutic target for SAMD9/9L-associated human diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Supressoras de Tumor/química , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Ligação Proteica , Estresse Fisiológico , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/metabolismo
14.
Acta Crystallogr D Struct Biol ; 77(Pt 8): 1050-1063, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342278

RESUMO

Homeobox transcription factors are key regulators of morphogenesis and development in both animals and plants. In plants, the WUSCHEL-related homeobox (WOX) family of transcription factors function as central organizers of several developmental programs ranging from embryo patterning to meristematic stem-cell maintenance through transcriptional activation and repression mechanisms. The Medicago truncatula STENOFOLIA (STF) gene is a master regulator of leaf-blade lateral development. Here, the crystal structure of the homeodomain (HD) of STF (STF-HD) in complex with its promoter DNA is reported at 2.1 Šresolution. STF-HD binds DNA as a tetramer, enclosing nearly the entire bound DNA surface. The STF-HD tetramer is partially stabilized by docking of the C-terminal tail of one protomer onto a conserved hydrophobic surface on the head of another protomer in a head-to-tail manner. STF-HD specifically binds TGA motifs, although the promoter sequence also contains TAAT motifs. Helix α3 not only serves a canonical role as a base reader in the major groove, but also provides DNA binding in the minor groove through basic residues located at its C-terminus. The structural and functional data in planta reported here provide new insights into the DNA-binding mechanisms of plant-specific HDs from the WOX family of transcription factors.


Assuntos
DNA/metabolismo , Medicago truncatula/metabolismo , DNA/química , Medicago truncatula/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Angew Chem Int Ed Engl ; 60(19): 10547-10551, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33621416

RESUMO

The 90 kDa heat shock protein (Hsp90) is a molecular chaperone that processes nascent polypeptides into their biologically active conformations. Many of these proteins contribute to the progression of cancer, and consequently, inhibition of the Hsp90 protein folding machinery represents an innovative approach toward cancer chemotherapy. However, clinical trials with Hsp90 N-terminal inhibitors have encountered deleterious side effects and toxicities, which appear to result from the pan-inhibition of all four Hsp90 isoforms. Therefore, the development of isoform-selective Hsp90 inhibitors is sought to delineate the pathological role played by each isoform. Herein, we describe a structure-based approach that was used to design the first Hsp90α-selective inhibitors, which exhibit >50-fold selectivity versus other Hsp90 isoforms.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Neoplasias/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo
16.
Plant Physiol ; 186(1): 483-496, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33576803

RESUMO

Programmed cell death (PCD) and apoptosis have key functions in development and disease resistance in diverse organisms; however, the induction of necrosis remains poorly understood. Here, we identified a semi-dominant mutant allele that causes the necrotic death of the entire seedling (DES) of wheat (Triticum aestivum L.) in the absence of any pathogen or external stimulus. Positional cloning of the lethal allele mDES1 revealed that this premature death via necrosis was caused by a point mutation from Asp to Asn at amino acid 441 in a nucleotide-binding leucine-rich repeat protein containing nucleotide-binding domain and leucine-rich repeats. The overexpression of mDES1 triggered necrosis and PCD in transgenic plants. However, transgenic wheat harboring truncated wild-type DES1 proteins produced through gene editing that exhibited no significant developmental defects. The point mutation in mDES1 did not cause changes in this protein in the oligomeric state, but mDES1 failed to interact with replication protein A leading to abnormal mitotic cell division. DES1 is an ortholog of Sr35, which recognizes a Puccinia graminis f. sp. tritici stem rust disease effector in wheat, but mDES1 gained function as a direct inducer of plant death. These findings shed light on the intersection of necrosis, apoptosis, and autoimmunity in plants.


Assuntos
Doenças das Plantas/genética , Plântula/fisiologia , Triticum/fisiologia , Alelos , Resistência à Doença/genética , Plântula/genética , Triticum/genética
17.
Insect Biochem Mol Biol ; 108: 44-52, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30905759

RESUMO

Peptidoglycan recognition proteins (PGRPs) recognize bacteria through their unique cell wall constituent, peptidoglycans (PGs). PGRPs are conserved from insects to mammals and all function in antibacterial defense. In the tobacco hornworm Manduca sexta, PGRP1 and microbe binding protein (MBP) interact with PGs and hemolymph protease-14 precursor (proHP14) to yield active HP14. HP14 triggers a serine protease network that produces active phenoloxidase (PO), Spätzle, and other cytokines to stimulate immune responses. PGRP1 binds preferentially to diaminopimelic acid (DAP)-PGs of Gram-negative bacteria and Gram-positive Bacillus and Clostridium species than Lys-PGs of other Gram-positive bacteria. In this study, we synthesized DAP- and Lys-muramyl pentapeptide (MPP) and monitored their associations with M. sexta PGRP1 by surface plasmon resonance. The Kd values (0.57 µM for DAP-MPP and 45.6 µM for Lys-MPP) agree with the differential recognition of DAP- and Lys-PGs. To reveal its structural basis, we produced the PGRP1 in insect cells and determined its structure at a resolution of 2.1 Å. The protein adopts a fold similar to those from other PGRPs with a classical L-shaped PG-binding groove. A unique loop lining the shallow groove suggests a different ligand-binding mechanism. In summary, this study provided new insights into the PG recognition by PGRPs, a critical first step that initiates the serine protease cascade.


Assuntos
Proteínas de Transporte/química , Proteínas de Insetos/química , Manduca/química , Animais , Manduca/imunologia , Simulação de Acoplamento Molecular , Peptidoglicano/química , Estrutura Secundária de Proteína , Receptores de Reconhecimento de Padrão/química , Ressonância de Plasmônio de Superfície
18.
Zhonghua Nan Ke Xue ; 25(5): 408-413, 2019 May.
Artigo em Chinês | MEDLINE | ID: mdl-32216225

RESUMO

OBJECTIVE: To assess the clinical value and safety of pelvic MRI combined with transurethral ultrasound (TRUS)-guided transperineal template mapping biopsy (TTMB) in the diagnosis of prostate cancer. METHODS: A total of 164 men underwent MRI plus TRUS-guided TTMB for the diagnosis of prostate cancer from December 2015 to May 2018. The patients averaged 71.2 years of age and, based on the PSA level, were divided into four groups: PSA <10 µg/L (n = 28), PSA 10-20 µg/L (n = 56), PSA 20.01-100 µg/L (n = 53) and PSA >100 µg/L (n = 27). All the patients received digital rectal examination, pelvic MRI and TRUS-guided X+12-core TTMB. RESULTS: The procedures of TRUS-guided TTMB were successfully completed in all the patients, with an average number of 14.2 (14-16) cores and mean operation time of 18 (15-28) minutes. Post-biopsy complications included transient hematuria in 4 cases, perineal hematoma in 12 and fever in 1, but no acute urinary retention. Pathological results revealed 95 cases of prostate cancer, 2 cases of ductal epithelial carcinoma, 63 cases of prostatic hyperplasia with benign interstitial inflammation, and 4 cases of atypical prostatic hyperplasia. The positive biopsy rates in the PSA <10 µg/L, 10-20 µg/L, 20.01-100 µg/L and >100 µg/L groups were 25.00%, 42.86%, 73.58% and 100.00% respectively, with statistically significant difference between the PSA <10 µg/L group and the PSA 20.01-100 µg/L and >100 µg/L groups (P < 0.01), but not between the PSA <10 µg/L and PSA 10-20 µg/L groups (P = 0.086). CONCLUSIONS: Pelvic MRI combined with TRUS-guided X+12-core TTMB, with the advantages of high accuracy and low rate of complications, is an ideal approach to the diagnosis of prostate cancer.


Assuntos
Biópsia Guiada por Imagem , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Biópsia , Humanos , Imageamento por Ressonância Magnética , Masculino , Antígeno Prostático Específico/sangue , Ultrassonografia
19.
Proc Natl Acad Sci U S A ; 115(27): 7028-7032, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915071

RESUMO

Cellular membranes are maintained as closed compartments, broken up only transiently during membrane reorganization or lipid transportation. However, open-ended membranes, likely derived from scissions of the endoplasmic reticulum, persist in vaccinia virus-infected cells during the assembly of the viral envelope. A group of viral membrane assembly proteins (VMAPs) were identified as essential for this process. To understand the mechanism of VMAPs, we determined the 2.2-Å crystal structure of the largest member, named A6, which is a soluble protein with two distinct domains. The structure of A6 displays a novel protein fold composed mainly of alpha helices. The larger C-terminal domain forms a unique cage that encloses multiple glycerophospholipids with a lipid bilayer-like configuration. The smaller N-terminal domain does not bind lipid but negatively affects lipid binding by A6. Mutations of key hydrophobic residues lining the lipid-binding cage disrupt lipid binding and abolish viral replication. Our results reveal a protein modality for enclosing the lipid bilayer and provide molecular insight into a viral machinery involved in generating and/or stabilizing open-ended membranes.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Vírus Vaccinia/química , Proteínas Virais/química , Cristalografia por Raios X , Proteínas de Membrana/genética , Vírus Vaccinia/genética , Proteínas Virais/genética
20.
Nat Commun ; 9(1): 425, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382832

RESUMO

The 90 kDa heat shock protein (Hsp90) is a molecular chaperone responsible for folding proteins that are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms. pan-Inhibition of Hsp90 appears to be detrimental as toxicities have been reported alongside induction of the pro-survival heat shock response. The development of Hsp90 isoform-selective inhibitors represents an alternative approach towards the treatment of cancer that may limit some of the detriments. Described herein is a structure-based approach to design isoform-selective inhibitors of Hsp90ß, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90ß-selective inhibitors as a method to overcome the detriments associated with pan-inhibition.


Assuntos
Antineoplásicos/química , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Ligação de Hidrogênio , Isoformas de Proteínas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...